Skip to main content

Deductive, Abductive, and Inductive Reasoning: Induction

A Research Guide to assist in the process of critical thinking and formulation of argument across scholarly disciplines

Watch it!

What is Inductive Reasoning?

Inductive reasoning: conclusion merely likely
Inductive reasoning begins with observations that are specific and limited in scope, and proceeds to a generalized conclusion that is likely, but not certain, in light of accumulated evidence. You could say that inductive reasoning moves from the specific to the general. Much scientific research is carried out by the inductive method: gathering evidence, seeking patterns, and forming a hypothesis or theory to explain what is seen.

Conclusions reached by the inductive method are not logical necessities; no amount of inductive evidence guarantees the conclusion. This is because there is no way to know that all the possible evidence has been gathered, and that there exists no further bit of unobserved evidence that might invalidate my hypothesis. Thus, while the newspapers might report the conclusions of scientific research as absolutes, scientific literature itself uses more cautious language, the language of inductively reached, probable conclusions:

What we have seen is the ability of these cells to feed the blood vessels of tumors and to heal the blood vessels surrounding wounds. The findings suggest that these adult stem cells may be an ideal source of cells for clinical therapy. For example, we can envision the use of these stem cells for therapies against cancer tumors [...].

Because inductive conclusions are not logical necessities, inductive arguments are not simply true. Rather, they are cogent: that is, the evidence seems complete, relevant, and generally convincing, and the conclusion is therefore probably true. Nor are inductive arguments simply false; rather, they are not cogent.

It is an important difference from deductive reasoning that, while inductive reasoning cannot yield an absolutely certain conclusion, it can actually increase human knowledge (it is ampliative). It can make predictions about future events or as-yet unobserved phenomena.

For example, Albert Einstein observed the movement of a pocket compass when he was five years old and became fascinated with the idea that something invisible in the space around the compass needle was causing it to move. This observation, combined with additional observations (of moving trains, for example) and the results of logical and mathematical tools (deduction), resulted in a rule that fit his observations and could predict events that were as yet unobserved.

Research Librarian

Dr. Dann Wigner's picture
Dr. Dann Wigner
Contact:
Jessie Ball duPont Library
The University of the South
178 Georgia Ave
Sewanee, TN 37383
931-598-1732
Website / Blog Page
Jessie Ball duPont Library, University of the South
178 Georgia Avenue, Sewanee, TN 37383
931.598.1664